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Abstract. An autonomous agent using manmade objects must understand how
task conditions the grasp placement. In this paper we formulate task based robotic
grasping as a feature learning problem. Using a human demonstrator to provide
examples of grasps associated with a specific task, we learn a representation, such
that similarity in task is reflected by similarity in feature. The learned represen-
tation discards parts of the sensory input that is redundant for the task, allowing
the agent to ground and reason about the relevant features for the task. Synthe-
sized grasps for an observed task on previously unseen objects can then be filtered
and ordered by matching to learned instances without the need of an analytically
formulated metric. We show on a real robot how our approach is able to utilize
the learned representation to synthesize and perform valid task specific grasps on
novel objects.

1 Introduction

This paper focuses on the problem of how an autonomous agent can discover how dif-
ferent tasks, conditions grasping. The challenge in task based grasping is two-fold, first
the agent needs to understand the task requirements, secondly it needs to translate these
to the object. Formulating the requirements explicitly is not likely to scale beyond sim-
ple tasks and objects. Therefore a promising approach is to try to infer the requirements
from data using a learning by demonstration approach.

As an example, given a set of demonstrations of pouring, the agent should realize
and generalize that the actual constraints lies in, not covering the opening, and in the
additional constraints that makes a placed grasp on a specific object successful. This is
the fundamental challenge facing data-driven task based grasping.

An important body of work on task based grasping, using a generative model, is
Song et al. [1,2]. The authors build a Bayesian Network around gripper, object, and task
parameters; making it possible to condition on task and synthesize task based grasps.
Even though the approach shows impressive results on synthetic data, building statisti-
cal models of all observations, will place significant constraints on the dimensionality
of the observations. It is thus questionable how the approach will perform when the
number of tasks and objects increase.
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A number of papers instead applies a discriminative approach and learns distribu-
tions over local features of the object, Saxena et al. [3], Boularis et al. [4], etc. This
avoids the complexity of the generative model but still requires a substantial amount of,
often manually, labeled data, which is expensive to obtain.

Rather than using features a successful approach is to represent objects as a set of
local templates. Grasping can then be learned on a template basis allowing for transfer
of grasps between different objects. The template systems of Detry et al. [5], Herzog
et al. [6], Kroemer et al. [7], and Ying et al. [8] have been shown to give good results.
The main drawback of these template based systems is their analytical approaches to
similarity and the complexity in constructing the template structure. Our method avoids
both these drawbacks by learning similarity from the data by learning a representation
and utilizing it for matching when synthesizing grasps.

Selecting the features that are relevant for a task to model task constraints is linked
with affordances. Stark et al. [9] detects affordance cues, functional parts of the object
that the human demonstrator uses for grasping. The agent then uses the cues to plan
grasps on objects. Aleotti et al. [10] presents a similar idea which represents objects as
a topology. Each demonstrated grasp is associated with one part of the topology. The
agent then formulates task constraints around the associated parts.

Instead of trying to decompose or detect functional parts of objects our method
revolves around relating previous grasping experience and grounding task constraints
in sensory data, similarly to our work in [11]. The features captured from the human
demonstrator can therefore be considered as object specific affordance cues that our
method learns to generalize.

2 Methodology

Our aim is to be able generate a set of grasps on a previously unseen object that are
compatible with a given task, and order them according to relevance.



In the learning process we observe a set of objects and grasps, placed by a human
demonstrator, that are suitable to achieve the task. For each grasp on an object we
extract a set of features, which capture global and local aspects, which we combine
into a vector x. The features, x, captured from a demonstration are labeled with a task
variable, t.

Global features describe the object as a whole, for example, how well it approx-
imates a shape primitive, etc. Local features, are features at the grasp of the human
demonstrator, for example, local curvature or color. We do not collect any pose infor-
mation of the demonstrator, since robot-human pose transforms are not the aim of this
paper. The demonstration procedure is illustrated in Figure 3 and the features we cap-
ture are described in the feature section.

Given a novel object, and a desired task we wish to infer from a set of synthesized
grasps, G = {gi}Mi=1, which of them are compatible with the task. For each synthesized
grasp we extract a feature vector in the same manner as in the demonstration process,
XG = {xi}Mi=1; this is explained further in the Grasp Synthesis section. To select valid
grasps from the synthesized set we apply k-Nearest Neighbor (k-NN) classification
using the learned instances.

After extracting the set of valid grasps we want to produce a ranking, which re-
flects how similar a synthesized grasp is to learned instances. We use a Kernel Density
Estimate (KDE) over the set of observed instances to produce a likelihood for each
of the grasps. The KDE is formed using a Gaussian Kernel and the assumption that a
suggested grasp, x∗, is conditionally independent of all other grasps except for the k
nearest neighbors, that is,

p(x∗|Xt) =
1

k

∑
x∈Xk

N (x∗;x,Σ), (1)

where Xk is the set of k closest neighbors to x∗ found in Xt, the observed instances
of the specific task, and Σ is a diagonal matrix. To execute the grasp on the object we
choose the most likely synthesized grasp.

2.1 Metric Learning For Feature and Transfer-Selection
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Fig. 2: Figuratively LMNN optimization decides on a set of
neighbors for each instance and then tries to push those neigh-
bors towards the instance, while pushing non-class members
out of the perimeter of the neighborhood.

Both k-NN and the Gaussian Kernel uses
a Euclidian metric to measure feature
proximity. It has several shortcomings, as
the dimension of the features increases it
becomes susceptible to noise, and the in-
clusion of irrelevant features. Further on,
different features have different natural
distance measures, and it is unclear how
one can weight these.

We instead consider the problem of
measuring similarity as a representation
learning problem, where we want to learn
a task dependent embedding from the



data such that similarity is translated into proximity in the embedding. In addition, we
want the embedding to reflect which features are relevant to the task.

One set of metric learning algorithms, that approaches the problems specified above,
are those that try to learn a Mahalanobis metric; that is, a positive semidefinite matrix
(PSD), M, that reflects information given about instance distances in the training data.

Since M is PSD the Mahalanobis metric is equivalent to applying a transform, L to
the data points, where M = LTL, and then computing the Euclidian distance; that is,

D(x, y) = (x− y)TM(x− y) =‖ L(x− y) ‖22 . (2)

The method we employ in this paper is the Large Margin Nearest Neighbor Clas-
sification (LMNN) algorithm [12]. [12] formulates the learning of M as a semidefinite
program (SDP) which tries to compress distances between subsets of instances of the
same class, called target neighborhoods, while pushing out non-class members, called
impostors, outside a specified margin. See Figure 2 for an illustration.

minimize

(1− µ)Σi,i j(xi − xj)TM(xi − xj) + µΣi,i j,l(1− yil)ξijl
subject to

(xi − xl)TM(xi − xl)− (xi − xj)TM(xi − xj) ≥ 1− ξijl
ξijl ≥ 0

M � 0

(3)

The first term in the objective function is the Mahalanobis distance which penalizes
large distances between target neighbors. The second term is the slack variables that
mimics the convex hinge loss. The indices i, j specify target neighbors, and l impostors.
The slack variables, ξijl, are over all triplets of target neighborhoods and measure the
amount of violation of the margin in the transformed space.

The target neighbors subsets are determined by either a priori specified information
about similarity or in the absence as the instances with minimum Euclidian distance in
the original space. The cardinality of the target neighborhoods is set manually.

M is learned by exploiting the fact that most target neighborhoods are homogenous
allowing the optimization to work on subsets of the constraints involving the neigh-
borhoods. M can thus be found using sub-gradients of the loss function with standard
hill-climbing algorithms, together with a step where M is projected onto the cone of all
positive semidefinite matrices [12].

Learning M, for D-dimensional data, requires learning D2 entries of the matrix,
the parameters of the model. With few data points that are high-dimensional overfitting
can occur. Since data points are expensive to obtain we want to reduce the number of
parameters. By letting M be diagonal, we only need to learn D parameters. Instead of
penalizing any non-zero off-diagonal elements in M in the objective function we set
all off-diagonal elements to zero, in the update step. The optimization process will thus
find the diagonal matrix that minimizes the cost function.

LMNN translates neatly into our feature representation for grasps. The diagonaliza-
tion of M allows us to treat the diagonal elements as feature weights, where low values



indicates non-discriminative features and therefore irrelevant features for a task. The
matrix found by LMNN thus implicitly facilitates feature selection. By analyzing the
magnitudes for a specific task we can compare with our expectations of which features
are important.

2.2 Features

We are interested in exploiting the fact that objects with similar function follow simi-
lar form. There is also evidence that humans make inference about the world by con-
sidering both global and local observations, [13], [14], and that both aspects enhance
inference [15].

Given the above observations we are interested formulating features that capture
both global and local aspects of the object. Since we a priori cannot know which of
them will be important for a task it is reasonable to select many simple and broad
features over those that are more discriminatory. In addition, having multiple features
will help when sensors fails, or give incorrect information.

We capture information from a grasp by extracting features from a bounding box
around the grasp and merging them with global descriptors of the object into a 104
dimensional vector. The process is illustrated in Figure 3. We go over the features briefly
below and provide motivation when needed.

Shape Primitives - Scoring function for how well the object resembles a spherical,
cylindrical, and cuboid.

Elongatedness - The ratio of the minor axes to the major axis.
Relative Free volume - The volume of the part of the object enclosed by the grasp

cuboid divided by the volume of the object.
Relative Grasping Position - The relative position of the grasp on the axes of the ob-

ject, that is, the ratio of the position of the grasp on the main axes divided by the
axes

Openings - The opening feature detects openings on objects, parametrized as a 3D
circle, and produces: - A binary value for the existence of an opening. - The angle
the grasp cuboid center makes with respect to the openings normal - The signed
relative orthogonal distance to the openings plane.

Bag of Words Histogram over Fast Point Feature - To encode local curvature we cre-
ate a Bag of Words model over the Fast Point Feature Histogram (FPFH) [16] using
a small set of 30 keywords. For each of the points in a recorded grasp we extract
count-normalized histogram (CNH) over the keywords.

Intensity and Gradient Filters - We apply gradient filters of first, second, and third
order over the 2D window containing the object. We also extract the intensity val-
ues. For each of the points in a recorded grasp we compute CNHs for each of the
filter values and the intensity values.

Color Quantization - We are interested in comparing color against color at the grasp
point, as there are reoccurring color patterns in human design. We segment the
image using the segmentation algorithm of [17] and encode each patch with its
closest color from a chart of 15 different colors, in CIELab space. Each point in the
point cloud of the object thus gets a quantized color assigned to it. For a grasp we
compute the CNH of the quantized colors of the points captured by the grasp.



Color Uniformity - We are also interested in the uniformity of the colors since objects,
usually have areas that have a single colors to indicate some form of function, for a
grasp we compute the entropy, mean and variance of the CNH color quantization.

2.3 Grasp Synthesis

Generating constructive grasps on a partial point cloud of an object is difficult. Models
that rely on collision detection are not applicable due to the partial representation of the
object. Our method for generating grasps mimics the method found in [18] but instead
uses the information found in the point cloud and point cloud normals. In short, we slice
the object with a plane constructed by points in the point cloud, and select an approach
vector that is orthogonal to the plane. The width of gripper is computed by taking the
minimum point spread of the two orthogonal directions to the plane. The height of the
gripper is set to a random value. The bounding box generated by the gripper is used to
extract the feature representation for the synthesized grasp.

3 Experiments

In evaluating our approach, we want to verify a number of things: - That our method can
order its nearest neighbors better than k-NN - That the ordering is reasonable - That the
approach can separate different groupings of grasps reasonably well - That the features
that LMMN picks out resonates with what could be expected for the specific task - That
the grasps we generate are in fact useful, placed at the proper positions and executable

3.1 Data Collection

We perform the collection of object-grasp data using a Kinect camera with objects
placed on a flat surface in front of the robot. The robot observes and segments out
the object and records features over the object. A human demonstrator performs both
positive and negative grasp examples for four different tasks: lift up, pouring, handle,
and corks. The robot observes the grasp placement and the local features as captured
by a box around the hand placement. The procedure is illustrated in Figure 3.

3.2 Learning

We preprocess the non-histogram features by scaling to unit variance. To evaluate the
learning we run the LMNN and k-NN a 100 times, using random splits of the collected

The object is placed in front of the 
robot, who examines it and records 
a set of global and local features 
from image and point cloud data.

A human demonstrates a set of grasps on the object to the robot. For each grasp the robot records a 
bounding box around the grasp and extracts the local features contained in the box. Each grasp is 
annotated for belonging to classes of tasks that the grasps is valid for.  In the figure the first and second 
grasp are positive grasps for pouring, while the third is a negative example.

Fig. 3: Procedure for learning from demonstration.



data with a ratio of 70% training and 30% test data. We also make sure that each split
contains at least 25% positive and negative examples. The reason for this lies in the
formulation of LMNN that allows instances some slack in fulfilling the optimization
constraints. The gradient descent optimization is thus prone to allowing the smaller
class to violate the constraints while optimizing for the bigger class. If the positive
example’s relevant features have been erased by the feature learning process then com-
parison to previously learned instances in the grasp synthesis phase becomes reliant on
comparison to irrelevant features.

We use 5 nearest neighbors to evaluate the classification rate. As can be seen in
Figure 4 LMNN is superior to k-NN performing better, roughly by 3-7% for all grasps
classes. The curves for the class agreement as a function of the nearest neighbor in
Figure 6, are also consistent for the LMNN while k-NN declines quite rapidly as the
order increases. Further on, k-NN has much more variance. A possible explanation for
the decline in the lift up task is that the features that explain a correct grasping position
might be less distinct compared to handles or corks.

Quantitatively LMNN outperforms k-NN as could be expected. Less clear is if the
embedding actually re-orders objects in an order that is sensical to a human observer. In
Figure 5 we have included a set of grasp instances and their 5 closest neighbors. As can
be seen the ordering in the LMNN embedding makes more sense. For example, in the
case of the pen cork k-NN has it that the nearest neighbor is the cork of a cleaning fluid
bottle while LMNN puts a similar pen as the nearest neighbor. Similar orderings can be
observed in the other examples and indicates that LMNN through the embedding finds
a more sensical ordering.

3.3 Feature Selection

Feature selection in our context means that the LMNN diagonal have low to zero values
for irrelevant features and high for relevant. One way of analyzing the selection is to
look at the mean value and standard deviation across the 100 runs. A detailed analysis
is provided in Figure 7.

3.4 Grasping

To evaluate how the model is able to transfer the demonstrated instances to grasp novel
objects we select a set of unseen objects for each task and generate a 10000 positive
samples using 1-NN for classification. We pick the most likely grasp as the one to
perform on the object. The final grasps are illustrated in Figure 1.

Pouring Lift Up Handle Cork
k-NN [92.3%, 9.8] [77.6%, 9.3] [77.0%, 8.4] [88.5%, 7.0]
LMNN [95.2%, 5.5] [80.5%, 10.2] [84.5%, 7.6] [95.5%, 3.9]

Fig. 4: k-NN and LMNN mean accuracy and standard deviation in classification of demonstrated grasp instances.



Fig. 5: 5 Nearest Neighbors to test instances for the four tasks for k-NN and LMNN. The number 0 and red overlay indicates
an instance of another class than the test instance. The LMNN ordering is much more sensical than the k-NN. For example in
the corks task, k-NN chooses the cork of a cleaning fluid bottle as the nearest neighbor while LMNN picks the cork of similar
looking pen as the nearest neighbor. In the pouring task, where we have defined the handle grasps as not good for pouring for
the robot’s limited gripper, LMMN manages produce a much more sensical ordering than the k-NN which includes several
handle grasps instances.

4 Conclusion

We have presented an approach for task based grasping based on metric learning. Our
approach use demonstrations to learn a task-specific representation with the character-
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(b) Pouring
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(c) Handle grasps
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Fig. 6: k-NN versus LMNN accuracy if using only the k-th neighbor for classification. The
low negative incline of the LMNN versus the k-NN indicates that learned transform improves
consistency.
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(b) Pouring
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(c) Handle grasps
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(d) Corks

Fig. 7: Mean values and standard deviation of the LMNN transformation
matrix diagonal as per feature. A value close to zero means that the feature
is considered irrelevant for separation by the LMNN. A value close to 1
and low standard deviation indicates that the feature is always present and
of low relevance for separation by the LMNN. In (a), the lift up task, we
expect that no feature is predominant since lift-up is more pose dependent
than feature dependent. And as can be seen intensity, color quantization,
and the BoW are the most relevant features. In (b), the pouring task, we
would expect the opening to be the most relevant feature, and it has a value
of around 0.4 with low standard deviation as could be expected. The BoW,
gradient and intensity are all significant factors which can be explained by
the similarity of objects that affords pouring. In (c), the handle grasp task,
we would expect the shape to play a predominant role. However, as the
diagram indicates the relative grasping position, color quantization and the
opening features are also factors. In (d), the grasping of corks, the color
quantization is an important factor as could be expected. Primitive shape
and elongatnedness are also factors which can be explained by the fact that
most items with corks are elongated and have a more cylindrical shape.

istic that distances reflect grasp similarity according to the demonstrated semantic. This
allows us to use simple distance based heuristics to transfer grasps from objects in the
training data-base to novel objects. We show experiments on a real robot where execu-
tion is performed on previously unseen objects according to the semantic learned during
demonstration. In future work we plan to extend the model to include information about



how the human demonstrator grasped the object, such as approach vector, type of grasp,
etc. Including this information will give the agent the ability to understand how the hu-
man demonstrator’s grasp relates to its own embodiment.
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